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Abstract: Biometric verification of subjects as users of computers or other 
devices has mainly based on fingerprints, face, iris or other images. We 
developed biometric verification using eye movements to be measured with eye 
movement videocameras. We measured saccades using the same stimulation 
for each subject. Our data included signals recorded in two manners: electro-
oculographically from 30 subjects and with a videocamera system from 
additional 30 subjects. Verification tests were run with k-means clustering, 
linear and quadratic discriminant analysis, Naïve Bayes rule and k nearest 
neighbour searching. The highest accuracies were obtained with k-means 
clustering, discriminant analysis and Naïve Bayes rule, up to 90% and even 
close to 100% at their best. 
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1 Introduction 

Fingerprints and face images are perhaps the most usual biometric means to verify  
a subject. Numerous computational techniques have been developed for these biometric 
images, e.g., Chang et al. (2011), Chellappa et al. (2010), Danielyan (2004), Jain et al. 
(1997), Kant and Nath (2009), Kukharev et al. (2011), Mane and Jadhav (2009), Rani  
et al. (2008), Shih and Liu (2011), in which the recognition process started from 
preprocessing and image analysis. Other biometric images have also been studied, for 
example, iris images (Abdullah et al., 2011; Arivazhagan et al., 2009; Danielyan, 2004; 
Dey and Samanta, 2010), palmprints (Prasad, 2010) or other images recorded from 
subjects. In addition, these alternatives have been combined to produce multimodal 
processes (Mane and Jadhav, 2009) and perhaps to improve verification. 

Verification of a user or subject is generally seen as a situation in which the actual 
user of a computer has to be determined and other possible subjects should be determined 
as non-users or imposters (Bednarik et al., 2005; Chellappa et al., 2010). Identification is 
usually seen as a more extensive computational task, in which any individual can be 
identified and distinguished from others in a group of subjects. We can see the former as 
a binary classification problem and the latter as a multiclass classification problem. In the 
present research we describe a novel technique to utilise saccade eye movements for 
verification purposes, as a simulation to verify an actual user of a computer or some 
device including a measuring component for eye movements. 

Our motivation to develop a verification technique applying eye movements arose 
from our earlier, long-term research in the field of otoneurological eye movement studies, 
e.g., Aalto et al. (1989), Juhola et al. (1985, 1997, 2007), Juhola, (1986). Of course, one 
reason was the technical development over the last 15 years of new videocamera systems 
to facilitate eye movement studies for various purposes (Morimoto and Mimica, 2005).  
In addition, we noticed how the values of a few essential features computed from eye 
movements varied fairly clearly between individuals (Juhola et al., 2007) which formed a 
sound basis for an objective to exploit eye movements in the process of verifying 
subjects. As the research of eye movements for human-computer interaction is currently 
very active, we may assume that in the future such systems can be used to aid interaction 
with computers in addition to a mouse and keyboard by registering the targets of the 
user’s gaze on a computer screen. Maybe such videocamera systems will be like the 
webcameras of today, cheap and easy to use. Therefore a verification procedure based on 
eye movements would be a timely and expedient property for a computer system 
including eye movement cameras. 

Saccades are probably the simplest eye movements (see Figures 1 and 2) to detect 
with signal analysis (Bahill et al., 1981; Baloh et al., 1976; Juhola et al., 1985, 2007, 
Juhola, 1986). They are also the fastest eye movements, in fact the fastest movements of 
any performed by a human being. They are very easy to stimulate. Most of the eye 
movements performed in daily life are saccades while moving the gaze from one target to 
another. These properties naturally give additional motivation to design a verification 
procedure based on saccades and not, for instance, on other eye movement types such as 
smooth pursuit movements. Using saccades we can deal with short signals of no longer 
than one to a few minutes being long enough for verification, since they can include tens 
of saccades. Compared to images this is an advantage because of the decidedly smaller 
quantities of data, which may reduce the computation times required for verification  
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and simplify the recognition process as such. When eye movement signals are  
one-dimensional signals, these include much less data than in images. 

To the best of our knowledge, one-dimensional physiological signals except voice 
have so far only seldom been investigated for the purpose of biometric verification or 
identification (Deshpande and Holambe, 2011). Still, voice is obviously a difficult area, 
not only because of recognition difficulties of voice signals as such, but since there can 
be so many disturbing factors such as surrounding noise from several sources, for 
instance, other speakers and traffic. As to other one-dimensional signals, studies (Chantaf 
et al., 2010; Israel et al., 2005; Sufi and Khalil, 2011) seem to include virtually only 
Electrocardiographic (ECG) signals, obviously being the most explored signal type in 
biomedical engineering. Since any accurate recording of ECG signals always requires  
a fixed contact to some parts of the limbs or body, its use for rapid verification is 
complicated. Furthermore, a subject should be at rest, for instance, should not have 
exerted before a measurement is taken. Otherwise, the intravariation between the ECG 
signals of an individual might be considerable. Thus these ideas have been perhaps at 
their best for special purposes, e.g., identifying a patient within a hospital, where ECG 
signals are recorded from time to time for medical investigations and follow-up. On the 
other hand, the advantage here is that ECG signal analysis has been studied very 
extensively for several decades and there are effective computational techniques available 
in that field. 

Eye movements have very rarely been studied for user verification purposes. Recently 
there have been four attempts to utilise eye movements for verification or identification. 
In one of these (Nishigaki and Arai, 2008), they detected the blind spot on a subject’s 
retina. If an object of a subject’s gaze was displayed at a position outside the blind spot  
in the visual field of the right user or subject, he or she saw it. In other words, the right 
subject moved the gaze to it while performing an eye movement. Another subject whose 
blind spot was very slightly different from that of the correct one should not have seen it, 
obviously making no saccades during the following one second recorded. The technique 
seemed to be complicated as every subject had to lean against a chin rest. In addition, 
there was a possibility that a subject made extraneous eye movements during this 1 s;  
he might have moved his eyes although did not see the actual object. It is inherent for 
everyone to constantly shift the gaze while looking at the surroundings – this has perhaps 
been very important in the distant past in our biological development to survive when 
human beings were both prey and predators, and, e.g., in traffic at present. During 
scientific tests extraneous eye movements may be forbidden, but not in natural behaviour 
expected in the routine use of computers. The investigation included no machine learning 
algorithm, which was our crucial idea in order to facilitate distinguishing between the 
right user and others and to adapt to the possible slow intraindividual alteration of  
a subject’s saccades in the course of time. 

Secondly, eye movements were studied (Kapczyński et al., 2006; Kasprowski and 
Ober, 2004) by computing the cepstrum of a signal and by classifying results according 
to naïve Bayes decision, nearest neighbour searching, decision trees and support vector 
machines. Thirdly, pupil sizes, gaze velocity and distance between eyes were used 
(Bednarik et al., 2005) for the biometric objective. Here fast Fourier transform and 
principal component analysis were computed for eye movement signals. Nearest 
neighbour searching was applied to the data tested according to the leave-one-out 
manner. Nevertheless, this technique was chiefly based on using a distance between eyes 
(images) and eye movements were in a minor role. In any case, their results proposed 
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discriminatory information between subjects in eye movements. Fourthly, a mathematical 
model of the oculomotor system was used for verification (Komogortsev et al., 2010) 
focusing on saccade trajectories. The parameter vectors of the model were used as input 
for the classification to distinguish subjects. Verification was executed by applying 
nearest neighbour and C4.5 tree classifications. 

Figure 1 This includes a 20 s Electro-oculographic (EOG) signal and its stimulation signal, 
which is the more regular and smoother of these. The stimulation signal precedes  
the EOG signal, because the subject has followed the stimulation light dot by his gaze, 
except concerning an extraneous small saccade on the right (starting approximately  
at sample 7000). Such a saccade was not used as an acceptable case because it was  
no response to any actual stimulation movement (see online version for colours) 

 

Figure 2 A VOG signal of 20 s and the corresponding smooth stimulation signal (see online 
version for colours) 
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2 Recording eye movements 

We applied two data sources. The more important data was measured with a videocamera 
or Video-oculogram (VOG) system (Visual Eyes, Micromedical Technologies, UK). 
However, since its sampling frequency (frame rate per second) was low, 30 Hz, we used 
another data set recorded earlier (Juhola et al., 2007). The same stimulation procedure 
was applied to both, so their results are comparable. The advantage of the latter  
Electro-oculographic (EOG) data set was that its sampling frequency was as high as  
400 Hz. We knew that this might be a critical issue given the earlier research (Andersson 
et al., 2010; Bahill et al., 1981; Juhola et al., 1985) since, of course, the higher sampling 
frequency enables gathering more information on eye movement signals. 

In VOG there is a videocamera for each eye registering horizontal and vertical eye 
movements according to positional changes of the pupils in images. In EOG skin 
electrodes are placed close to the eye corners to register potential differences changing 
along with the eye movements. To make the stimulation as simple and practical as 
possible we applied horizontal eye movements only. In addition, EOG is better for 
horizontal than vertical eye movements, since the latter are sensitive to eye blinks and so 
wide vertical angles cannot be recorded as accurately as horizontal movements. EOG  
is typically noisier than VOG, because the former may include abundant noise, such as 
that originating from facial muscles because of talking, smiling, frowning, gasping etc. 
Therefore, a subject is advised not to do these during tests. VOG is much more  
 ‘user-friendly’ in many respects, since it excludes the described problems provided that  
a subject remembers to keep her eyes open. 

Signals such as those in Figures 1 and 2 were measured with the EOG and VOG 
techniques. The videocamera system worn by an author is seen in Figure 3. With his 
gaze, he followed a light dot (LEDs) in the black bar in front of him. The light dot was 
altered rapidly to another place in the bar (actually one LED was switched off and 
another switched on) so that the angle formed by them in the direction of the spectator 
seemed to be random from the spectator’s viewpoint. Such angles were constant when  
the distance of the eyes from the bar was constant. However, any slight alteration in this 
distance would have had only a negligible effect. In addition, varying the time intervals 
between jumps of the light dot made the stimulation movements random-like for the 
spectator, although they formed a fixed series of stimulation movements shown for each 
subject. Such a series was complicated enough so that it could not be learnt although  
it was repeated several times for an individual. It was important to avoid any proactive 
saccades that would not have been authentic responses to the stimulation movements 
arranged. This type of saccade stimulations has been applied to medical investigations for 
decades as a standard convention, for instance, Aalto et al. (1989), Bahill et al. (1981), 
Baloh et al. (1976), Kaminiarz et al. (2009). On the other hand, for data analysis it was 
important that there were several responses to similar stimulations from each subject so 
that a machine learning algorithm was able to learn the feature values of individuals from 
the data. 

The stimulations employed were used as if in the initialisation of a subject’s computer 
session, which he or she begins by logging into the computer. The idea was not to write a 
password, but that the computer would recognise its legal user by recording the user’s 
eye movements during the initialisation of the computer system. The purpose was that the 
computer would present the same stimulation series of light dot jumps on its screen.  
The user was due to look at the dot jumping approximately once in two seconds for a 
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minute or so. Both stimulation amplitude (lengths of jumps of the light dot) and time 
intervals between jumps were varied, and most amplitudes should be large enough, such 
as 40–60°. The large amplitudes guaranteed that variation occurred for saccade features 
between subjects (Henriksson et al., 1980; Juhola et al., 2007). The large saccade 
amplitudes were used for verification, but occasionally a smaller one could be 
interspersed so that the angle was changed surprisingly in the stimulation series to make 
it random-like for a spectator. 

Figure 3 A subject was following the target with his gaze on the bar in front of him. The small 
red LED was the target light, which jumped abruptly from one place to another along 
the bar (see online version for colours) 

 

Using both EOG and VOG we utilised data measured from two disjoint sets of 
individuals each including 30 people. The EOG signals, the duration of which was 80 s, 
consisted of 12 or more large saccades. Since the VOG signals of duration 64 s included 
only four large saccades (above 40º), three such segments were measured from each 
subject. Since the sampling frequency of EOG was 400 Hz and that of VOG 30 Hz only, 
the VOG signals were linearly interpolated to raise its (artificial) frequency (13 times  
30 Hz) up as close as possible to that of EOG in order to enable comparisons between  
the two techniques and to make VOG ‘more accurate’ as regards saccade features. The 
effect of increasing sampling frequencies on saccade features, particularly maximum 
velocity, was presented earlier (Andersson et al., 2010; Bahill et al., 1981; Juhola et al., 
1985). Interpolation, of course, is not the same as an original measurement using a higher 
sampling frequency, but it can be used as an estimate. 

The EOG signals had been recorded monocularly at the same time from both eyes 
with two skin electrodes and a ground electrode on the forehead. The signals were 
recorded at 400 Hz, amplified to a scale of ± 10 V, converted with an analog-digital 
converter of 13 bits and filtered digitally with a lowpass filter of 70 Hz cutoff. Calibration 
was accomplished with the signals themselves by employing the constant amplitude 
stimulations of 60º at the beginning and end of each signal. The VOG system included  
a built-in image processing system to find the pupil of an eye in order to compute eye 
movements on the basis of the positions of the pupil. The sampling frequency was 30 Hz 
interpolated up to 390 Hz. The system required no separate calibration (except when the 
system was installed for the very first time). Since in VOG there were two videocameras, 
one for each eye, two horizontal signals were received at every measurement. The better 
one, with less possible noise or artefacts such as eye blinks, was chosen from these two. 
The amplitude accuracy of both measuring techniques was 1º or better. 
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The EOG signals had been recorded at a university hospital, and a physician had 
checked all the voluntary subjects for being able to do the test without any impediments. 
Spectacles could be used since skin electrodes attached to the corners of the eyes had 
been used. There had been approximately as many females as males among the 30 
subjects and their approximate mean age had been 45 years. The distance between the 
target of a computer-controlled light dot and a subject had been 1.40 m. The VOG signals 
were measured from a younger population of 20 males and 10 females, whose mean age 
was 29 ± 10 years. Since spectacles could not be used in the VOG measurements,  
the ability of all subjects to see accurately enough was checked first to avoid possible 
problems such as severe myopia. Associated with the age, two subjects only had 
presbyopia. In addition, the distance between the target of the bright LED light and  
a subject was 0.74 m for VOG measurements, shorter than for EOG. There were two 
different groups: the former (EOG) with ages from young to old and with both sexes 
equally, and the latter (VOG) as a fairly homogeneous age group of mainly young males. 
It was hard to find clear indications from the physiological literature showing whether  
a subject’s sex might have any effects on saccades. We have not observed anything like 
this in our several earlier eye movement studies. Obviously, age can have effects. 
Therefore, it was interesting to have two quite different groups. 

3 Signal analysis and forming data for verification 

The EOG eye movement signals were considered according to the method presented,  
e.g., in Juhola (1986) and Juhola et al. (2007). The VOG eye movement signals, being 
usually less noisy than EOG, were processed with conventional, straightforward signal 
analysis methods. The objective in both was to identify saccades from them, i.e., the 
beginning and end of every saccade as accurately and correctly as possible so that 
features could be computed from the saccades detected. The principle in both techniques 
was to approximate the first derivative, which equals the angular velocity of eye 
movements. Detecting clear, rapid changes in this reveals saccade beginnings and ends. 
A threshold criterion of 10 s was used for velocity. In addition to this, stimulation signals 
had to be considered so that we knew at which time each stimulation movement (a jump 
of the light dot) had started. This was an easy task, because stimulation signals are 
noiseless and very regular, as seen in Figures 1 and 2. 

The EOG data included 12–35 large saccades from each subject. The VOG data 
consisted of exactly 12 large saccades from a subject. After the detection of saccades the 
features of latency, amplitude, accuracy and maximum velocity (Figure 4) were 
computed from every acceptable saccade found from a signal. Latency or reaction time is 
the time between the beginning of a saccade and its stimulation. An accuracy value  
is equal to the difference of the amplitudes (angles) of a stimulation movement and its 
response. A saccade amplitude is more frequently less than its stimulation amplitude,  
but sometimes also greater. Finally, the maximum of the velocity curve was computed 
(Figure 4). For the EOG and VOG signals the means and standard deviations of the 
features are given in Table 1. The negative accuracy denotes smaller saccade amplitudes 
than stimulation amplitudes. Thus these fairly large standard deviations denoted 
opportunities to distinguish subjects from each other. The differences of the means 
between the techniques came from the different subjects and the different measurement 
techniques. 
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Table 1 Means and standard deviations of features in the EOG and VOG data sets and their 
ratios between interindividual variation and intraindividual variation 

Data 
set 

Amplitud
e (º) 

Accuracy 
(º) 

Latency  
(s) 

Maximum 
velocity 

(º/s) 
Duration 

(s) 

Maximum 
acceleration 

(º/s2) 

Maximum 
deceleration 

(º/s2) 

Means and standard deviations 

EOG 53 ± 11 –7 ± 11 0.231 ± 0.110 631 ± 121    

VOG 47 ± 11 2 ± 8 0.216 ± 0.058 965 ± 280 0.182 ± 0.055 42980 ± 23667 40464 ± 24757 

Ratios rj of interindividual and intraindividual variations 

EOG 0.81 0.85 1.39 1.33    

VOG 0.97 0.68 0.40 0.71 0.36 0.71 0.75 

The features described above are commonly used in medical and physiological tests, 
because changing in these can reveal peculiarity of a human being’s physiology. Further, 
others are sometimes also computed. We still computed the duration, maximum angular 
acceleration and maximum angular deceleration (Table 1) of the saccades of the VOG 
data in order to see whether these could improve the verification results of our main  
data. The duration is equal to the time difference between the beginning and end of a 
saccade. The acceleration curve is the approximated second derivative during  
a saccade (Figure 4). The latter part of this curve consists of deceleration (in the opposite 
direction in Figure 4). The maxima of both parts form two additional physiologically 
meaningful features. 

To further explore the separation ability of the features we calculated ratios of 
interindividual and intraindividual variations in the following (Gu et al., 2003). Here  
j denotes a feature, n is equal to the number of subjects, ūij is equal to the mean of feature 
j of subject i, ēj the mean of feature j for all subjects, ukj the value of feature j of saccade k 
for subject i and pi the number of the saccades for subject i. The higher the ratio,  
the better the distinguishing property of a feature is met: 
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The results rj in Table 1 indicated that the features of accuracy, latency and maximum 
velocities were better to distinguish in EOG than VOG because of their greater values  
in EOG. Thus these predicted that EOG saccades could be verified better. Perhaps the 
originally low sampling frequency of VOG also affected this, even after the interpolation, 
so that the ratios of VOG were less than for EOG, apart from the amplitudes. 
Nonetheless, we cannot draw any firm conclusions about this, since the two data sets 
were entirely disjoint, not only measured with the different techniques, but also from 
different subjects. 

We restricted ourselves to the preceding time domain variables, only excluding 
possible frequency domain variables. This choice was based on the extensive use of these 
time domain variables in such areas of medicine as physiology, ophthalmology, 
otoneurology and neurophysiology and medical informatics since the 1960s (Bahill et al., 
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1981; Baloh et al., 1976; Boghen et al., 1974; Bollen et al., 1993; Henriksson et al., 1980; 
Juhola et al., 1985, 1997, 2007; Pyykkö et al., 1984; Robinson, 1964; Schmidt et al., 
1979; Thomas and O’Beirne, 1967). We therefore knew that the features selected can 
express various physiological phenomena. As regards verification with eye movements, 
cepstrum was applied (Kasprowski and Ober, 2006), and fast Fourier transform 
(spectrum) and principal component analysis were used (Bednarik et al., 2005). 
Nevertheless, the significance of eye movements was minor in the latter, since the 
verification computation was chiefly on the basis of the image analysis subject to the 
distance of eyes and pupil diameters. Naturally, the use of frequency domain is worth 
studying although not included in the present research. 

Figure 4 An ideal saccade curve on the left from which seven features can be computed: 
amplitude, accuracy, latency, duration, maximum angular velocity, maximum angular 
acceleration and maximum angular deceleration. All are physiological features used  
in medical, psychological etc. investigations 

 

4 Verification tests 

Two test conditions were applied to simulate the verification of a user on the basis of 
saccade eye movements. For the first test condition we needed two classes: saccades  
of the right user and those of others called non-users. For the second test condition we 
needed a third group of subjects, excluding the right user and non-users used for  
a training set. The third group then formed a test set of imposters. 
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First, the right user was due to be verified as such in the first condition. The former 
pseudocode described how a training set and its corresponding test set of one saccade 
were built for the classification of n subjects. Since the leave-one-out testing method was 
used, one saccade at a time formed a test set and all other saccades of the same subject 
(the right user) were a part of a training set jointly with some saccades randomly taken 
from other subjects (non-users). 

For the second condition, we had to divide subjects excluding the right user into  
non-users and imposters, each of these two groups being approximately equal parts  
of n–1 subjects. Test saccades were taken from the group of imposters. 

The ratio between the number of the saccades of the right user and that of non-users 
could have been selected in numerous ways, but it was reasonable to set more saccades  
in the latter, which should represent a clearly larger area in the feature space.  
We determined two different selections to form these ratios as follows. 
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For the first selection and for the first condition there, the saccades of every subject  
as the right user were taken and these were tested against one saccade (b = 1) from other 
c = 18 subjects as non-users (not the right user) randomly chosen from 29 subjects. 
Alternately each of n = 30 subjects was in the role of the right user. For the second test 
condition the saccades of each subject (right user) were taken against 2b = 2 saccades 
times some other d = 9 subjects (non-users). Additional 9 random subjects were used  
as imposters due to be verified as such (not the right user). Since there were at least 12 
(large amplitude) saccades from each subject, we varied this selection when there were 
more (only in EOG). Thus, a = 12 saccades were taken for the right user. In this way, 
there were a user’s 11 saccades versus non-users’ 18 saccades in a training set of the first 
condition and a user’s 12 saccades versus non-users’ 18 saccades in that of the second 
condition. 

For the second selection and for its first condition there were again a = 12 saccades 
for the right user. Then b = 1 saccade was taken randomly from each of c = 29 non-users. 
In the second condition 2b = 2 saccades were taken randomly from each of c = 15  
non-users. Here the saccades of d = 14 imposters were naturally used merely for testing, 
not for training, since in reality they would not have been known in advance. When  
10 more or less different training sets had been built, we could run t = 10 test rounds for 
30 subjects using both EOG and VOG data, i.e., 60 individuals in total. The results were 
then computed for 300 test series for every classification setup. Thus, there were a user’s 
11 saccades versus non-users’ 29 saccades in a training set of the first condition and  
a user’s 12 saccades versus non-users’ 30 saccades in that of the second condition. 

Because the number of saccades was rather small, we ran leave-one-out tests for both 
data sets as described. This is appropriate for small data sets. A test result was checked  
as to whether it was correct: in the first test condition a saccade of the right user denoting 
this individual and in the second test condition a saccade of an imposter denoting  
non-users’ saccades. Our verification problem was a binary classification task for both 
conditions. 

If an entire guess had been made for classification in the first condition of the second 
selection, it would have been incorrect, since the a priori probability of incorrect 
classification was 29/40, greater than 0.5. Instead, that of the correct classification was 
11/40 in every training set. Therefore, no pure guess would have helped here, but  
a machine learning algorithm really had to learn the features from a data set. Thinking of 
the situation more abstractly, we can understand that the binary classification task 
contained a feature space of the current features and values, in which every right user 
consisted of a minor part and the corresponding non-users the rest, a major part of the 
feature space used. Imposters were probably within the volume of the feature space,  
but their feature values were not known in advance as for those of a training set. On the 
average, imposters ought to resemble more the non-users of a training set than the right 
user. More similar cases ought to be present among non-users, because non-users 
predominated in a far larger part of the feature space volume used than that of a single 
correct user. 

We ran our classifications using k-means clustering, k nearest neighbour searching, 
linear and quadratic discriminant analysis and naïve Bayes rule. These methods were 
chosen since they can be trained even with relatively small training sets. They can cope 
with situations where a class distribution between two classes is rather imbalanced,  
for instance, 10% and 90% of training cases. (Although we did not test so biased 
distributions this time, they are in our future plans.) For example, multilayer perceptron 
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networks might be unsuitable due to the reasons presented (Siermala and Juhola, 2006; 
Autio et al., 2007). Computational time complexities were not crucial here, since the 
numbers of input data were relatively small, probably not more than a few hundred 
training cases and fewer test cases. Naturally, there are other classification methods that 
could be as effective as these tested. For example, support vector machines could be such 
since they are designed especially for binary classifications, but we shall address other 
classification methods in our future research. 

For clustering we also tested different distance measures and feature values either 
normalised into interval [0,1] or without normalisation. As seen in the previous means  
of the features (in Section 3), their scales varied considerably. Thus normalisation might 
have affected something in machine learning. In addition, to compare EOG and VOG 
results we ran VOG tests with the basic four features. Furthermore, we tested the  
VOG data set with all seven features as described above. 

5 Test results 

As mentioned, 10·30 random test series were executed in the manner of leave-one-out 
among a set of 30 subjects in both EOG and VOG data. There were two selections for the 
sizes of the groups of non-users (9 or 15 subjects) and imposters (9 or 14 subjects) and 
two test conditions for these: correct user verification and imposter verification. All the 
computation was executed with Matlab R2010a™ (MathWorks Inc., USA). The results 
are described in the following, first for the first selection and then slightly more concisely 
for the second selection. 

For the first selection we performed tests by using k-means clustering either without 
or with feature value normalisation. We tested four distance measures: Euclidean and city 
block (Manhattan) in Table 2, and cosine and correlation distance measures in Table 3. 
(To limit the number of results presented we did not give standard deviations, which were 
mostly small, a few percent or less.) The numbers of clusters were tested from 2 to 6. 
Greater numbers of clusters were not applied since there were only 29 (or 30 for the 
second condition) cases altogether in a training set in our binary classification. We found 
that greater numbers of clusters would also have started to yield empty clusters. 
Understandably, this was due to the small number of training cases. For the VOG data, 
there were two alternatives of the features applied. V4 included amplitude, accuracy, 
latency and maximum velocity. In addition to these, V7 comprised duration, maximum 
acceleration and maximum deceleration. The results are given as accuracies in 
percentages, in other words, how many classifications were correct related to all cases 
tested. If false rejection rates are desired (Type I error or false negative rate), these are 
formed by decreasing an accuracy value from 100% in the first condition. 
Correspondingly, false acceptance rates (Type II error or false positive rate) can be 
calculated in the second condition. 

Looking at the best accuracies in Tables 2 and 3 we found that the results of the EOG 
data set were better than those of the VOG data set for the condition 1. Instead, for 
condition 2 there were no such differences. The best accuracies of condition 1 were 
typically obtained with 5 or 6 clusters. Their differences were small between all clusters 
for condition 2, except occasionally in 2–4 clusters of EOG. Subject to the best VOG 
results, condition 2 was better classified than condition 1, but between the best EOG 
results no differences could be seen. 
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Table 2 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for Euclidean and city block distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every column 
are given in bold face and their mean is B 

With normalisation Without normalisation 

Euclidean distance measure 

Condition 1 Condition 2 Condition 1 Condition 2 
k EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 58 ± 6 32 ± 5 25 ± 7 93 ± 5 97 ± 2 98 ± 2 69 ± 5 15 ± 4 16 ± 5 87 ± 6 99 ± 2 98 ± 3 
3 88 ± 5 56 ± 8 48 ± 5 88 ± 6 95 ± 4 96 ± 2 84 ± 6 42 ± 8 51 ± 8 96 ± 3 93 ± 5 97 ± 4 
4 94 ± 5 69 ± 7 63 ± 7 93 ± 6 96 ± 3 98 ± 2 89 ± 5 62 ± 8 63 ± 8 95 ± 4 96 ± 3 96 ± 3 
5 97 ± 3 79 ± 3 79 ± 6 98 ± 3 97 ± 4 98 ± 4 89 ± 5 75 ± 9 80 ± 6 98 ± 2 96 ± 3 99 ± 2 
6 97 ± 3 83 ± 5 83 ± 5 97 ± 2 97 ± 2 98 ± 2 97 ± 2 85 ± 11 84 ± 7 96 ± 4 97 ± 3 98 ± 2 

B 93 94 
City block distance measure 

 Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 62 ± 9 34 ± 7 25 ± 4 96 ± 3 97 ± 4 99 ± 2 68 ± 7 28 ± 7 30 ± 8 89 ± 4 96 ± 3 96 ± 3 
3 86 ± 8 55 ± 9 55 ± 7 94 ± 4 98 ± 2 98 ± 3 84 ± 6 52 ± 7 49 ± 5 96 ± 3 97 ± 3 98 ± 2 
4 96 ± 4 66 ± 7 63 ± 6 96 ± 4 97 ± 3 97 ± 3 90 ± 3 67 ± 5 61 ± 7 95 ± 4 95 ± 4 97 ± 3 
5 96 ± 4 83 ± 6 78 ± 5 96 ± 2 98 ± 2 99 ± 3 97 ± 4 78 ± 4 73 ± 8 97 ± 4 98 ± 3 98 ± 2 
6 97 ± 2 86 ± 4 84 ± 7 98 ± 2 98 ± 2 98 ± 3 97 ± 3 89 ± 4 87 ± 6 99 ± 2 97 ± 5 99 ± 1 
B 94 95 

Table 3 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for cosine and correlation distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every selection 
(column) are given in bold face and their mean is B 

With normalisation Without normalisation 

Cosine distance measure 
Condition 1 Condition 2 Condition 1 Condition 2 

k EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
2 53 ± 6 24 ± 6 25 ± 7 93 ± 2 99 ± 2 98 ± 2 55 ± 6 843 ± 9 28 ± 4 91 ± 5 94 ± 3 96 ± 4 
3 79 ± 4 42 ± 7 41 ± 9 87 ± 6 97 ± 4 98 ± 3 82 ± 6 61 ± 9 40 ± 6 88 ± 7 95 ± 4 97 ± 2 
4 91 ± 3 60 ± 6 65 ± 8 93 ± 4 97 ± 2 96 ± 1 93 ± 3 72 ± 8 56 ± 7 95 ± 3 95 ± 6 99 ± 2 
5 96 ± 4 73 ± 7 79 ± 7 93 ± 2 98 ± 3 98 ± 2 95 ± 3 83 ± 3 66 ± 9 97 ± 4 96 ± 5 99 ± 2 
6 96 ± 3 83 ± 6 84 ± 5 97 ± 2 97 ± 3 98 ± 4 98 ± 2 88 ± 4 76 ± 4 97 ± 3 97 ± 3 98 ± 2 
B 93 93 
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Table 3 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for cosine and correlation distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every selection 
(column) are given in bold face and their mean is B (continued) 

Correlation distance measure 

Condition 1 Condition 2 Condition 1 Condition 2 

 

EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 49 ± 9 20 ± 5 18 ± 4 93 ± 6 98 ± 2 98 ± 2 60 ± 5 42 ± 9 25 ± 7 88 ± 5 94 ± 4 95 ± 4 
3 76 ± 7 43 ± 9 43 ± 6 90 ± 3 97 ± 3 97 ± 3 87 ± 6 57 ± 5 40 ± 7 88 ± 5 96 ± 3 97 ± 3 
4 92 ± 4 59 ± 7 60 ± 9 93 ± 4 96 ± 3 98 ± 3 92 ± 5 69 ± 8 52 ± 4 93 ± 4 97 ± 3 98 ± 2 
5 93 ± 5 71 ± 7 76 ± 7 96 ± 4 97 ± 3 97 ± 3 95 ± 4 78 ± 7 62 ± 8 95 ± 4 98 ± 2 98 ± 4 
6 96 ± 3 83 ± 3 80 ± 7 96 ± 3 99 ± 1 98 ± 2 99 ± 2 89 ± 6 78 ± 7 96 ± 3 99 ± 2 99 ± 2 
B 92 93 

We also computed means B of the best accuracies of the columns to roughly estimate 
possible differences between distance measures and with or without normalisation. 
Whether the normalisation of the features was applied revealed no differences. For the 
results within single distance measures, the situations varied slightly, but generally there 
were no differences between their best values. In most of all cluster numbers there were 
none, but occasionally differences greater than 5% appeared between the use of V4 and 
V7 for 2–4 clusters of condition 1 in the VOG data set. Considering still the means of the 
best values and comparing the four distance measures with each other we noticed that 
there were virtually no differences between them. 

Next we ran tests using k nearest neighbour searching, linear and quadratic 
discrimination analysis, and naïve Bayes rule. All tests were implemented similarly to 
that mentioned above for clustering. Nonetheless, we did not normalise feature values 
except in k nearest neighbour searching. Since there were k (>1) nearest neihgbours 
involved in every classification instead of 1 compared to all other classification methods, 
we did not use directly majority vote. The verification procedures in Section 4 were 
modified to indicate a correct verification in condition 1 provided that 

1 ,
1

x a
ka a bc

−>
− +

 

where a, b and c were defined in Section 4 and k is the number nearest neighbours and  
x equals the number of correctly classified saccades of subject i. Here the left side was 
compared to the a priori probability of a correct verification. For condition 2 the opposite 
operator (≤) was employed since correct verification decisions then corresponded to 
matching with non-users’ saccades more frequently than with those of a right user.  
The results are presented in Tables 4 and 5. The Euclidean distance measure was applied 
to these tests. 

While running k nearest neighbour searching its maximum was 11, since no more 
than 12 saccades were used for a right user, in other words, for the smaller class.  
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According to Table 4, the tests of condition 1 were classified better than for condition 2. 
According to Table 5, linear discriminant analysis generated the best results for  
condition 1. Instead, quadratic discriminant analysis was best in condition 2. 

Table 4 Selection 1: Results in percentages for k nearest neighbour searching (k equal to  
1, 3, 5, 7, 9, or 11). EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

 Condition 1 Condition 2 

k EOG V4 V7 EOG V4 V7 

1 73 ± 8 82 ± 6 82 ± 6 58 ± 9 74 ± 8 63 ± 5 
3 82 ± 6 84 ± 5 89 ± 5 62 ± 7 73 ± 5 67 ± 7 
5 86 ± 6 88 ± 3 87 ± 5 66 ± 7 71 ± 7 68 ± 9 
7 87 ± 6 89 ± 4 91 ± 4 59 ± 6 65 ± 9 64 ± 8 
9 85 ± 4 88 ± 2 89 ± 2 51 ± 7 58 ± 4 57 ± 3 
11 82 ± 3 87 ± 1 87 ± 2 60 ± 6 51 ± 6 53 ± 8 

Table 5 Selection 1: Results in percentages for linear and quadratic discriminant analysis and 
naïve Bayes rule. EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

Condition 1 Condition 2 
Method EOG V4 V7 EOG V4 V7 

Linear discriminant 99 ± 1 84 ± 5 82 ± 4 78 ± 4 70 ± 6 76 ± 9 
Quadratic discriminant 96 ± 2 86 ± 5 37 ± 7 85 ± 8 83 ± 5 92 ± 4 
Naïve Bayes rule 97 ± 3 78 ± 3 80 ± 4 87 ± 5 83 ± 7 80 ± 7 

We still computed tests for the second selection mentioned above, which incorporated 
more non-users and more saccades of non-users in training sets than in the first selection. 
On the basis of the a priori probabilities of its two classes, the right user and non-users, 
condition 1 could become more difficult to verify and vice versa for condition 2. 

We ran k-means clustering tests similar to those shown in Tables 2 and 3. 
Nevertheless, since the results obtained were quite similar between the four distance 
measures, Table 6 only includes results for the Euclidean measure. They indicated how 
the increase of non-users’ saccades in training sets significantly decreased accuracies  
in condition 1. On the other hand, those of condition 2 increased virtually up to 100%. 
The magnitudes of the changes in condition 1 were surprising, although changes were 
indeed expected. For condition 2 the changes were small, because the accuracies  
were already close to 100% in Table 2 and the a priori probabilities in selection 2 
favoured condition 2. 
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Table 6 Selection 2: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for the Euclidean distance measures. 
EOG denotes the results of the EOG data set, V4 the VOG data set with four features 
and V7 with seven features. The best value or values of every column are given in 
bold face and their mean is B 

With normalisation Without normalisation 
Euclidean distance measure 

k Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
2 28 12 10 97 100 100 21 ± 8 6 ± 2 6 ± 3 99 ± 2 100 100 
3 42 18 13 99 100 100 38 ± 4 9 ± 2 14 ± 5 100 100 100 
4 60 26 20 98 99 100 50 ± 8 19 ± 5 21 ± 5 99 ± 1 100 100 

Table 6 Selection 2: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for the Euclidean distance measures. 
EOG denotes the results of the EOG data set, V4 the VOG data set with four features 
and V7 with seven features. The best value or values of every column are given in 
bold face and their mean is B (continued) 

With normalisation Without normalisation 
Euclidean distance measure 

k Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
5 72 35 26 99 99 98 56 ± 7 28 ± 5 22 ± 7 100 100 100 
6 78 46 34 100 99 99 63 ± 9 36 ± 8 34 ± 9 100 100 100 
B 76 72 

Finally, we tested nearest neighbour searching (Table 7) and the other three classification 
methods (Table 8). Compared to the results in Table 4, the method of nearest neighbour 
searching gave slightly better results for condition 2, as expected, but only a few percent 
poorer for k equal to 1 in condition 1. Linear and quadratic discriminant analysis and 
Bayes rule altered the best results of condition 2 from Table 5 to Table 8. 

Table 7 Selection 2: Results in percentages for k nearest neighbour searching (k equal to  
1, 3, 5, 7, 9, or 11). EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of every column is 
given in Bold face 

Condition 1 Condition 2 
k EOG V4 V7 EOG V4 V7 
1 69 ± 5 79 ± 4 80 ± 6 70 ± 8 80 ± 5 75 ± 5 
3 83 ± 6 88 ± 2 87 ± 5 66 ± 12 72 ± 8 76 ± 6 
5 86 ± 5 86 ± 6 87 ± 4 62 ± 9 69 ± 11 75 ± 5 
7 86 ± 5 89 ± 3 89 ± 3 61 ± 8 67 ± 5 73 ± 6 
9 90 ± 4 90 ± 4 91 ± 6 58 ± 8 69 ± 7 67 ± 8 
11 87 ± 5 88 ± 3 89 ± 2 54 ± 5 60 ± 7 60 ± 7 
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Table 8 Selection 2: Results in percentages for linear and quadratic discriminant analysis and 
naïve Bayes rule. EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

Condition 1 Condition 2 
Method EOG V4 V7 EOG V4 V7 

Linear discriminant 89 ± 6 87 ± 4 84 ± 3 89 ± 6 87 ± 4 87 ± 3 
Quadratic discriminant 97 ± 2 85 ± 3 25 ± 2 93 ± 4 89 ± 4 98 ± 2 
Naïve Bayes rule 90 ± 2 65 ± 3 69 ± 3 98 ± 3 97 ± 2 92 ± 4 

6 Conclusion and discussion 

In the following we draw conclusions on the results obtained. On the basis of Tables 2-8 
nearest neighbours produced poorer results for condition 1 compared to those of other 
methods. Further, selection 2 was more successful for condition 2 than selection 1 
according to Tables 4 and 7. Although the results for condition 2 could be improved from 
selection 1 to selection 2, the results for condition 1 did not drop. Unlike with the other 
methods, the results of k-means clustering for condition 1 were greatly impaired along 
with this change, where clustering favoured the majority class of non-users. Instead, 
linear and quadratic discriminant analysis and naïve Bayes rule were fairly intolerant of it 
in condition 1, but could improve results in condition 2. Neither normalisation nor choice 
of distance measure seemed to affect the results in clustering.  

Computing with or without normalisation did not lead to differences in these data 
sets, but since the scales of the seven features applied are very different, it is reasonable 
to return to this issue later in the future research after having collected larger VOG data 
sets. Viz., latency and duration are roughly in [0.05,0.5], amplitude in [10,70], accuracy 
in [–40,30], maximum velocity in [100,1100] and maximum acceleration and 
deceleration in [10000,100000]. The current VOG data was our preliminary data set.  
In the VOG data the differences between the results of either four or seven features 
varied and were mostly small, a few percent. Thus both could be applied. 

The results introduced could not be easily compared with the results of the 
verification tests presented for fingerprints and face images, among others, since these 
test situations and methods were very different. However, looking at classification 
accuracy values only, our results turned out well. It was possible to verify a right subject 
(condition 1) up to 90% and even close to 100% with the EOG data and also to detect an 
imposter as such at its best for the current data. For those other eye movement or related 
results (Bednarik et al., 2005; Kapczyński et al., 2006; Kasprowski and Ober, 2004), they 
obtained various results for subject identification. For 9 subjects they obtained average 
false acceptance rates of 1.4-17.5% and average false rejection rates of 12.6-35.6% 
depending on a classification method (Kasprowski and Ober, 2004), for 47 subjects 
average false acceptance rates of 4.8% and average false rejection rates of 9.4% 
(Kapczyński et al., 2006), and for 12 subjects 90% accuracy based mostly on distance 
between eyes (not actually on eye movements) (Bednarik et al., 2005). Nearest neighbour 
searching yielded false acceptance rates of 5.4 % and false rejection rates of 56.6 %, but 
C4.5 trees gave poor false acceptance and good false rejection rates (Komogortsev et al., 
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2010). Altogether, they recorded 68 subjects, but only 41 subjects passed criteria set for 
the analysis. Our highest accuracies were better than those of the few other studies 
published so far. 

Although EOG recordings are not relevant in the planned routine use of eye 
movements for the verification of users because of the skin electrodes needed, they were 
useful in the present research to predict how the results might have been better while 
waiting for more effective videocamera systems in the future regarding their sampling 
frequency (frame rate per second). As was seen, the results obtained with EOG were 
sometimes (for condition 1 in Tables 2, 3 and 6) slightly better than those with VOG.  
A probable cause is the higher sampling frequency of EOG applied, 400 Hz, compared to 
the low one for the VOG data, 30 Hz only. There are VOG systems with higher 
frequencies up to at least 500 Hz, but they are expensive. After all, we also showed here  
that it is possible to verify a user with a low frequency camera, which is a beneficial 
property when considering the use of eye movement for verification. 

As one-dimensional signals eye movements can be fairly easily measured and rapidly 
analysed in the theoretical time complexity sense compared to image data.  
Eye movements can also be measured in difficult circumstances such as in dim light. The 
stimulation can be run within one minute, which is enough to include 30–40 saccades, 
perhaps only in 30–45 s. 

What could be possible problems concerning user verification based on eye 
movements? Falsification is out of the question here since it is virtually impossible to 
imitate some one else’s eye movements. Modern videoacameras can function well  
in difficult circumstances regarding illumination and temperature. An interesting issue is 
ageing (Lanitis, 2010) for most biometric techniques. Saccades may become slower with 
age, which would decrease, e.g., maximum velocity and latencies could become longer. 
However, the meaning of such possible phenomena is negligible in the current context of 
user verification, because this can always be implemented so that the verification system 
is adaptive, where after each acceptable login the training data buffer of the users’ 
saccade features would be updated with a new item, leaving out the oldest one.  
A few dozen items would be sufficient in such a data buffer. Thus the period from which 
the content of the buffer is collected would be short, perhaps a few weeks. Moreover, 
computers, mobile phones etc. are seldom used for more than five years. A more drastic 
effect on eye movements might be caused by some disease affecting eye movements 
(Henriksson et al., 1980; Juhola et al., 1997, 2007; Pyykkö et al., 1984). These, however, 
are very infrequent. The adaptation property of the verification system would then be 
very useful. 

A problem could be a possible variability in individuals’ saccade feature values.  
If a subject’s saccades vary too much at short intervals, say during days, this may cause 
difficulties in distinguishing his or her saccades from those of others. However, such 
studies have been reported showing no significant differences between different 
measurement times. For instance, no statistically significant differences had been 
obtained when average maximum velocities of 58 healthy subjects were computed within 
an interval of two weeks (Bollen et al., 1993). Nevertheless, we are going to study this 
matter in the future. 

In the future we shall collect measurements from more subjects and develop our 
technique on the basis of the research introduced. We believe that eye movements could 
be used for verification when eye movement videocamera systems are used like 
webcameras at the moment. The encouraging results of the verification experiments 
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presented support these objectives well. There are still several other classification 
methods worth testing. Logistic discriminant analysis has sometimes been effective.  
Like support vector machines they are designed for binary classification in particular. 
Neural networks such as multilayer perceptron networks, learning vector quantisation 
networks, self-organising maps (Kohonen networks), and radial basis function networks 
are possible, but neural networks frequently require a large amount of training data. Thus 
their use might be complicated. Decision trees may cope well with small amounts of data 
and imbalanced class distributions. 
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